
Building Corpora for the Development of a Dependency Parser
for Spanish Using Maltparser∗

Jesús Herrera
Departamento de Lenguajes y Sistemas Informáticos

Universidad Nacional de Educación a Distancia
C/ Juan del Rosal, 16, E-28040 Madrid

jesus.herrera@lsi.uned.es

Pablo Gervás, Pedro J. Moriano, Alfonso Muñoz, Luis Romero
Departamento de Ingenieŕıa del Software e Inteligencia Artificial

Universidad Complutense de Madrid
C/ Profesor José Garćıa Santesmases, s/n, E-28040 Madrid

pgervas@sip.ucm.es, {pedrojmoriano, alfonsomm, luis.romero.tejera}@gmail.com

Resumen: En el presente art́ıculo se detalla el proceso de creación de corpora
para el entrenamiento y pruebas de un generador de analizadores de dependencias
(Maltparser). Se parte del corpus Cast3LB, que contiene análisis de constituyentes de
textos en español. Estos análisis de constituyentes se transforman automáticamente
en análisis de dependencias. Además se describe cómo se obtiene, experimentalmente
y de manera semiautomática, un conjunto de etiquetas de funcionalidad sintáctica
para etiquetar adecuadamente el corpus de entrenamiento. El proceso seguido ha
permitido obtener un analizador de dependencias para el español con una precisión
del 91 % en la determinación de dependencias.
Palabras clave: Análisis de dependencias, corpus de entrenamiento, etiqueta de
funcionalidad sintáctica, Maltparser, JBeaver

Abstract: The present paper details the process followed for creating training and
test corpora for a dependency parser generator (Maltparser). The starting point is
the Cast3LB corpus, which contains constituency analyses of Spanish texts. These
constituency analyses are automatically transformed into dependency analyses. In
addition, the empirically and semiautomatically obtention of a set of syntactic func-
tion labels for the training corpus is described. As a result of the process followed, it
has been obtained a dependency parser for Spanish showing a 91% precision when
determining dependencies.
Keywords: Dependency parsing, training corpus, syntactic function label, Malt-
parser, JBeaver

1. Introduction

The development of JBeaver, a depen-
dency parser for Spanish (Herrera et al.,
2007), is based on the use of Maltparser (Ni-
vre et al., 2006), which is a machine learning
tool for generating dependency parsers for,
virtually, every language. Such development
carries inherently associated the labour of ge-
nerating corpora for its training and its sub-
sequent evaluation.

The amount of work needed for develo-
ping from scratch a corpus annotated with
dependency analyses, and with a suitable si-
∗ Agradecimientos

ze for training Maltparser, exceeded the pos-
sibilities of the JBeaver project. Therefore,
it was necessary to find an alternative way
for the generation of such corpus. A possible
approach was to reuse available resources in
order to build from them a corpus annotated
with dependency analyses in a semiautoma-
tic way. For this, the Cast3LB (Navarro et
al., 2003) treebank was used. It is conformed
by 72 Mb of Spanish annotated texts, ap-
proximately and itcontains the constituency
analysis for every sentence in it. Leaving asi-
de certain subtleties (Gelbukh and Torres,
2006), constituency analysis and dependency

analyses can be converted one into the ot-
her in a systematic way. After studying the
format and labels used for Cast3LB (Nava-
rro et al., 2003) (Civit, 2002), a system capa-
ble of transforming the constituency analyses
contained in Cast3LB into dependency analy-
ses was developed by modifying an algorithm
proposed by Gelbukh et al. (Gelbukh and To-
rres, 2006) (Gelbukh et al., 2005). The exis-
tence of Cast3LB and the possibility of trans-
forming the analyses contained in it into de-
pendency analyses were important reasons to
use Maltparser in the JBeaver project.

On the other hand, having decided that
the JBeaver parser would be made generally
available to the public, lead us to consider
additional requirements. For instance, we de-
cided to make as easy as possible the use of
JBeaver by tools already adapted to the use
of Minipar (Lin, 1998). This is due to the fact
that Minipar has become a de facto standard
in the last years after being used by a large
number of ris are, as far as possible, the same
as the one used for Minipar.

2. The source corpus

A dependency analysis corpus is needed
for training Maltparser. The construction of
such a corpus by hand implied a work load
well beyond the constraints of the JBeaver
project. Thus, it was decided to take advanta-
ge of existing resources. Taking into account
that, except for some specific cases (such
as non-projective constructions), the depen-
dency analysis of a text can be automatically
derived from its constituency analysis (Gel-
bukh and Torres, 2006), and that Cast3LB –
which contains constituency analyses of Spa-
nish texts– was available, it became the best
option as source corpus for the project. Then,
the training corpus was obtained in a semi-
automatic way from Cast3LB.

Cast3LB contains 100,000 words in, ap-
proximately, 3,700 sentences of texts in Spa-
nish. 75,000 words of Cast3LB come from the
ClicTALP corpus, which is a set of text from
several domains: literary, journalistic, scienti-
fic, etcetera, and the other 25,000 words come
from the EFE news agency’s corpus from year
2000 (Navarro et al., 2003). In figure 1 an ex-
cerpt from Cast3LB is shown as an example.

3. Building a training corpus

Malparser requires for its training a cor-
pus in which, for every word of the analyzed

text, the following data must be incorpora-
ted: a unique identifier, its part of speech la-
bel, the identifier of the head of that word
and a label indicating the syntactic function
given in the dependency relationship. Malt-
parser admits both a XML format and a tab
format at its input. In figure 2 two mutually
equivalent examples are shown (the first one
in XML format and the second one in tab
format).

The numeric identifier 0 and the syntactic
function label ROOT are used by convention
to designate the dependency tree’s root1.

All the information needed for the crea-
tion of the training corpus was contained in
the Cast3LB corpus, but it was necessary to
extract it and to modify it to suit the con-
ventions followed by Maltparser. For this, the
two following actions were accomplished: the
obtention of dependency relationships, and
the obtention of syntactic function labels.

3.1. Obtaining dependency
relationships

In order to extract the dependency re-
lationships between words contained in the
Cast3LB corpus, an automatic process was
developed. It was designed from an algorithm
proposed by Gelbukh et al. (Gelbukh and To-
rres, 2006) (Gelbukh et al., 2005), modified as
needed.

3.2. Obtaining syntactic functions
labels

The great popularity reached in the last
years by Minipar lead to the decision of using,
in the JBeaver project, a set of syntactic func-
tion labels that followed, as far as possible,
the nomenclature given by Minipar. In this
way, it would be easier to adapt systems cu-
rrently using Minipar to the use of JBeaver.
Since the Cast3LB corpus contains specific
syntactic function labels, they must be trans-
lated into the ones used by Minipar in or-
der to train Maltparser with the appropriate
set of labels. For this, the first action to be
accomplished was to obtain the set of syn-
tactic function labels from Minipar. Since an
exhaustive list of these labels is not publi-
cly available, it was necessary to try to ob-
tain the best possible approach, from a lar-
ge number of analyses made with Minipar.
Following this goal, an empirical work was

1http://w3.msi.vxu.se/∼nivre/research/
MaltXML.html

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE FILE SYSTEM "3lb.dtd">
<FILE id="agset" language="es" wn="1.5" ewn="dic2002"
parsing_state="process" semantic_state="process"
last_modified="13-01-2006" project="3LB" about="3LB project annotation file">
<LOG auto_file="a1-0-auto3.log" anno_file="a1-0-anno4.log"
nosense_file="a1-0-nosense4.log" />
<SENTENCE id="agset_1">
<Anchor id="agset_1_ac1" offset="0"/>
<Anchor id="agset_1_ac2" offset="15"/>
<Anchor id="agset_1_ac3" offset="21"/>
<Anchor id="agset_1_ac4" offset="23"/>
<Anchor id="agset_1_ac5" offset="26"/>
<Anchor id="agset_1_ac6" offset="34"/>
<Anchor id="agset_1_ac7" offset="40"/>
<Anchor id="agset_1_ac8" offset="42"/>
<Anchor id="agset_1_ac9" offset="52"/>
<Anchor id="agset_1_ac10" offset="54"/>
<Annotation id="agset_1_an3" start="agset_1_ac1" end="agset_1_ac2"
type="syn">
<Feature name="roles">SUJ</Feature>
<Feature name="label">sn</Feature>
<Feature name="parent">agset_1_an2</Feature>
</Annotation>
<Annotation id="agset_1_an4" start="agset_1_ac1" end="agset_1_ac2"
type="syn">
<Feature name="label">grup.nom.ms</Feature>
<Feature name="parent">agset_1_an3</Feature>
</Annotation>
<Annotation id="agset_1_an5" start="agset_1_ac1" end="agset_1_ac2"
type="wrd">
<Feature name="label">Medardo_Fraile</Feature>
<Feature name="sense">C2S</Feature>
<Feature name="parent">agset_1_an6</Feature>
</Annotation>
<Annotation id="agset_1_an6" start="agset_1_ac1" end="agset_1_ac2"
type="pos">
<Feature name="lema">Medardo_Fraile</Feature>
<Feature name="label">np00000</Feature>
<Feature name="parent">agset_1_an4</Feature>
</Annotation>
<Annotation id="agset_1_an1" start="agset_1_ac1" end="agset_1_ac10"
type="dummy_root">
<Feature name="label"/>
<Feature name="parent"/>
</Annotation>

Figura 1: Excerpt from Cast3LB

accomplished, based on the idea that with a
great amount of analyses made with Minipar
the set of different labels found would be very
close to the real set of labels. The process em-
ployed was the following:

1. A set of English texts obtained from the
web was parsed with Minipar. It consis-
ted of about 1 Mb of texts from seve-
ral domains extracted from the Project

<sentence id="2" user="malt" date="">
<word id="1" form="Genom" postag="pp" head="3" deprel="ADV"/>
<word id="2" form="skattereformen" postag="nn.utr.sin.def.nom" head="1"
deprel="PR"/>
<word id="3" form="infors" postag="vb.prs.sfo" head="0" deprel="ROOT"/>
<word id="4" form="individuell" postag="jj.pos.utr.sin.ind.nom" head="5"
deprel="ATT"/>
<word id="5" form="beskattning" postag="nn.utr.sin.ind.nom" head="3"
deprel="SUB"/>
<word id="6" form="(" postag="pad" head="5" deprel="IP"/>
<word id="7" form="sarbeskattning" postag="nn.utr.sin.ind.nom" head="5"
deprel="APP"/>
<word id="8" form=")" postag="pad" head="5" deprel="IP"/>
<word id="9" form="av" postag="pp" head="5" deprel="ATT"/>
<word id="10" form="arbetsinkomster" postag="nn.utr.plu.ind.nom" head="9"
deprel="PR"/>
<word id="11" form="." postag="mad" head="3" deprel="IP"/>

</sentence>

Genom pp 3 ADV
skattereformen nn.utr.sin.def.nom 1 PR
infors vb.prs.sfo 0 ROOT
individuell jj.pos.utr.sin.ind.nom 5 ATT
beskattning nn.utr.sin.ind.nom 3 SUB
(pad 5 IP
sarbeskattning nn.utr.sin.ind.nom 5 APP
) pad 5 IP
av pp 5 ATT
arbetsinkomster nn.utr.plu.ind.nom 9 PR
. mad 3 IP

Figura 2: Mutually equivalent training files for Maltparser (XML and tab)

Gutemberg2 covering the following do-
mains: sport (197.1 Kb containing 1,854
phrases), economy (207.1 Kb containing
1,173 phrases), education (160.5 Kb con-
taining 869 phrases), history (162.2 Kb
containing 1,210 phrases), justice (98.2
Kb containing 453 phrases) and health
(265.2 Kb containing 2,409 phrases).

2. The output files given by Minipar were
treated in order to extract the set of all
different syntactic function labels.

3. A set of analyses, in which all the labels
found were present, was selected and the
following algorithm was applied to it:
for each syntactic function label identi-
fied do

if this function may occur in Spanish
then

2http://www.gutenberg.org/

Set one or more rules for suitably
transforming the syntactic function label
from Cast3LB into the identified label;

else
Discard the identified label;

end if
end for

The rules mentioned above were imple-
mented in the program that transforms cons-
tituency analyses into dependency analyses.
A special label was used to identify not yet
discovered syntactic functions that might be
found in the future.

After the establishment of the set of syn-
tactic rules, a significant set of constituency
analyses was transformed into dependency
analyses. Having obtained the dependency
treebank, all the analyses containing one or
more special labels for not yet discovered

syntactic functions was manually analyzed.
Then, every case was studied in order to de-
termine if a new syntactic function label was
incorporated to the set or the considered syn-
tactic function could be assimilated to one of
the known labels. In figure 3 the complete list
of syntactic function labels is shown, i.e., tho-
se from Minipar and those that were defined
ad–hoc.
Identified Minipar’s syntactic function labels:

sc neg pcomp–n
pnmod nn gen
poss lex–

dep
appo

whn mod subj
aux amod guest
num vrel else
punc det neg
amount–value

New ad–hoc syntactic function labels:

ROOT adj fecha
descr c-descr compdet

Figura 3: Syntactic function labels used in
the training corpus

The set of syntactic function labels finally
obtained was not necessarily complete, but it
was reasonably valid for its purpose. Thus,
it was used by the algorithm that transfor-
med constituency analyses into dependency
analyses for labelling the syntactic functions
according to Minipar’s nomenclature.

3.3. Part of speech tagging

One of JBeaver’s features is that is capa-
ble to parse texts with no need of a previous
annotation. Since the model learned by Malt-
Parser requires, for the parsing step, that
every word is labeled with its part of speech,
the tagging subtask is implemented in JBea-
ver by the part of speech tagger Treetagger
(Schmid et al., 1994). The use of Treetagger
was motivated by the fact that its set of part
of speech labels was the one used for Malt-
Parser’s training.

3.4. The definitive corpus

Following the process described in this sec-
tion, 280 XML files (72.9 Mb) containing
constituency analyses from the Cast3LB cor-
pus, consisting of 97,002 words, were trans-
formed into dependency analyses apt for their

processing by MaltParser (a tab training fi-
le of 1.6 Mb), being labeled according to the
requirements of the JBeaver project.

4. The test corpus and results
obtained

For the evaluation of the trained model
a fraction of dependencies correctly found
and labeled was computed. The gold stan-
dard was a fraction of the corpus described
in section 3. This corpus was divided in th-
ree equal parts; two of them were used as the
training corpus and the other one was used
both as test corpus and as gold standard. For
using it as test corpus, the annotations con-
cerning dependency relationships and syntac-
tic function were eliminated, i.e., it was con-
formed only by the words and their part of
speech tags, which is the format required by
MaltParser for using it as parser. Thus, the
output given by the trained model was com-
pared with the gold standard, and 91% of
the dependencies found by the trained model
were according to the gold standard (Herrera
et al., 2007). This result is comparable to the
one obtained by Nivre et al. when training
MaltParser for Spanish (Nivre et al., 2006).

5. Conclusions and future work

The process of building corpora for trai-
ning and testing a specific tool for gene-
rating dependency parser (Maltparser) has
been shown. This process has proper featu-
res because of the requirements of the pro-
ject in which it has been developed (JBeaver).
It was mandatory to use existing resources,
and a constituency analyses corpus has been
satisfactorily transformed into a equivalent
dependency analyses corpus. For this purpo-
se, an algorithm previously proposed by Gel-
bukh et al. was modified and applied. In ad-
dition and in order to fulfill the necessities of
the project, the set of syntactic function la-
bels of Minipar was empirically determined.

The future work includes the search for
more syntactic function labels, from Minipar
and new ones not considered yet. Also, some
research could be done in order to improve
the algorithm that transforms constituency
analyses into dependency analyses. By means
of these future improvements, it should be
possible to learn better models for depen-
dency parsing in Spanish.

In addition, similar development efforts to
the one described here could be carried out

for other languages.

Bibliograf́ıa

M. Civit. 2002. Etiquetación de los Cuan-
tificadores: Varias Propuestas. TALP Re-
search Center–Universidad Politécnica de
Cataluña. Technical Report.

A. Gelbukh and S. Torres. 2006. Trata-
miento de Ciertos Pronombres y Conjun-
ciones en la Transformación de un Cor-
pus de Constituyentes a un Corpus de De-
pendencias. Avances en la Ciencia de la
Computación. VII Encuentro Internacio-
nal de Computación ENC’06.

A. Gelbukh, S. Torres and H. Calvo. 2005.
Transforming a Constituency Treebank in-
to a Dependency Treebank. Procesamiento
del Lenguaje Natural, No 35, September
2005. Sociedad Española para el Procesa-
miento de Lenguaje Natural (SEPLN).

J. Herrera, P. Gervás, P.J. Moriano, A.
Muñoz, L. Romero. 2007. JBeaver: Un
Analizador de Dependencias para el Es-
pañol Basado en Aprendizaje. Under eva-
luation process for CAEPIA 2007.

D. Lin. 1998. Dependency–based Evaluation
of MINIPAR. Proceedings of the Works-
hop on the Evaluation of Parsing Systems,
Granada, Spain.

B. Navarro, M. Civit, M.A. Mart́ı, R. Marcos,
B. Fernández. 2003. Syntactic, Semantic
and Pragmatic Annotation in Cast3LB.
Proceedings of the Shallow Processing on
Large Corpora (SproLaC), a Workshop on
Corpus Linguistics, Lancaster, UK.

J. Nivre, J. Hall, J. Nilsson, G. Eryiğit
and S. Marinov. 2006. Labeled Pseudo–
Projective Dependency Parsing with Sup-
port Vector Machines. Proceedings of the
CoNLL-X Shared Task on Multilingual
Dependency Parsing, New York, USA.

H. Schmid. 1994. Probabilistic Part-of-
Speech Tagging Using Decission Trees.
Proceedings of the International Confe-
rence on New Methods in Language Pro-
cessing, pages 44–49, Manchester, UK.

